Friday, August 8, 2014

Scalar Multiplication

Scalar Multiplication of Matrices

In matrix algebra, a real number is called a scalar.
The scalar product of a real number, r, and a matrix A is the matrix rA.  Each element of matrix rA is r times its corresponding element in A.
Given scalar r and matrix  .
Example 1:
Let A = , find 4A.

Properties of Scalar Multiplication:

Let and be m × n matrices.  Let Om × n be the m × n zero matrix and let p and q be scalars.
Properties of Scalar Multiplication
Associative Property p(qA) = (pq)A
Closure Property pA is an m × n matrix.
Commutative Property pA = Ap
Distributive Property  
 (p + q)A = pA + qA
 p(A + B) = pA + pB
Identity Property 1 · A = A
Multiplicative Property of –1 (–1)A = –A
Multiplicative Property of 0 0 · A = Om × n

http://hotmath.com/hotmath_help/topics/scalar-multiplication-of-matrices.html

Matrix Addition

 

Adding Matrices

Rules for matrix addition:
  1. Matrices that are to be added together must be the same size (same number of rows and same number of columns)
  2. The corresponding cells of each matrix are added together. So cell a1,1 is added to cell b1,1, cell a3,2 is added to b3,2, and so on.
Note that matrix addition is commutative, so A + B = B + A
Example: