Friday, August 8, 2014

Scalar Multiplication

Scalar Multiplication of Matrices

In matrix algebra, a real number is called a scalar.
The scalar product of a real number, r, and a matrix A is the matrix rA.  Each element of matrix rA is r times its corresponding element in A.
Given scalar r and matrix  .
Example 1:
Let A = , find 4A.

Properties of Scalar Multiplication:

Let and be m × n matrices.  Let Om × n be the m × n zero matrix and let p and q be scalars.
Properties of Scalar Multiplication
Associative Property p(qA) = (pq)A
Closure Property pA is an m × n matrix.
Commutative Property pA = Ap
Distributive Property  
 (p + q)A = pA + qA
 p(A + B) = pA + pB
Identity Property 1 · A = A
Multiplicative Property of –1 (–1)A = –A
Multiplicative Property of 0 0 · A = Om × n

http://hotmath.com/hotmath_help/topics/scalar-multiplication-of-matrices.html

No comments:

Post a Comment