Scalar Multiplication of Matrices
In matrix algebra, a real number is called a scalar.
The scalar product of a real number, r, and a matrix A is the matrix rA. Each element of matrix rA is r times its corresponding element in A.
Given scalar r and matrix
.
.
Example 1:
Let A =
, find 4A.
, find 4A.
Properties of Scalar Multiplication:
Let A and B be m × n matrices. Let Om × n be the m × n zero matrix and let p and q be scalars.
Properties of Scalar Multiplication
| |
| Associative Property | p(qA) = (pq)A |
| Closure Property | pA is an m × n matrix. |
| Commutative Property | pA = Ap |
| Distributive Property |
(p + q)A = pA + qA
p(A + B) = pA + pB
|
| Identity Property | 1 · A = A |
| Multiplicative Property of –1 | (–1)A = –A |
| Multiplicative Property of 0 | 0 · A = Om × n |
http://hotmath.com/hotmath_help/topics/scalar-multiplication-of-matrices.html


![[A I]=[a_(11) ... a_(1n) 1 0 ... 0; a_(21) ... a_(2n) 0 1 ... 0; | ... | | | ... |; a_(n1) ... a_(nn) 0 0 ... 1],](http://64.19.142.13/mathworld.wolfram.com/images/equations/Gauss-JordanElimination/NumberedEquation1.gif)
![[1 0 ... 0 b_(11) ... b_(1n); 0 1 ... 0 b_(21) ... b_(2n); | | ... | | ... |; 0 0 ... 1 b_(n1) ... b_(nn)].](http://64.19.142.13/mathworld.wolfram.com/images/equations/Gauss-JordanElimination/NumberedEquation2.gif)
![B=[b_(11) ... b_(1n); b_(21) ... b_(2n); | ... |; b_(n1) ... b_(nn)]](http://64.19.142.11/mathworld.wolfram.com/images/equations/Gauss-JordanElimination/NumberedEquation3.gif)
