Gauss-Jordan Elimination
A method for finding a matrix inverse. To apply Gauss-Jordan elimination, operate on a matrix
![]() |
(1)
|
![]() |
(2)
|
The matrix
![]() |
(3)
|
is then the matrix inverse of
. The procedure is numerically unstable unless pivoting (exchanging rows and columns as appropriate) is used. Picking the largest available element as the pivot is usually a good choice.
![[A I]=[a_(11) ... a_(1n) 1 0 ... 0; a_(21) ... a_(2n) 0 1 ... 0; | ... | | | ... |; a_(n1) ... a_(nn) 0 0 ... 1],](http://64.19.142.13/mathworld.wolfram.com/images/equations/Gauss-JordanElimination/NumberedEquation1.gif)
![[1 0 ... 0 b_(11) ... b_(1n); 0 1 ... 0 b_(21) ... b_(2n); | | ... | | ... |; 0 0 ... 1 b_(n1) ... b_(nn)].](http://64.19.142.13/mathworld.wolfram.com/images/equations/Gauss-JordanElimination/NumberedEquation2.gif)
![B=[b_(11) ... b_(1n); b_(21) ... b_(2n); | ... |; b_(n1) ... b_(nn)]](http://64.19.142.11/mathworld.wolfram.com/images/equations/Gauss-JordanElimination/NumberedEquation3.gif)
No comments:
Post a Comment